Proteins—the building blocks of natural systems—offer advantageous structural properties for the design of functional materials and present rare and modest but appealing electrical conduction features. The e-Prot project vision encompasses the rational design of efficient conductive protein systems (e-Ps), and the fabrication of all-protein based conductive structures and materials, targeting a radical change in design of "green" electronic and energy storage devices. This breakthrough relies on a multidisciplinary scientific approach that combines i) a profound understanding of protein building blocks, biomolecular design principles, state-of-the-art synthetic biology, and chemical tools, to systematically fabricate new protein materials; and ii) cutting-edge characterization techniques and computational models that will provide an unprecedented fundamental understanding of protein conduction thus building a solid foundation for their technological implementation. Selected engineered conductive proteins will be upscaled and implemented as smart ink-based conductors and ionic electrolytes in energy storage devices, as a first demonstration of the feasibility of an inherently biocompatible and fully sustainable all-protein (e-Prot) bioelectronics platform. This groundbreaking approach surpasses current bio-inspired technologies, transforming the emerging research field of protein-based bioelectronics, currently still limited to basic research, to a new level of sophistication facilitating real-world applications.